Diplomado Ciencias de Datos para Negocios con Software R

%cocid%
Ejemplo de Documento emitido al Concluir el Diplomado avalado por la Sectería de Educación del Estado de Morelos
%cocid%
módulos

Módulo 1. Econometría y diseño de investigación

TEMA 1. INTRODUCCIÓN A LA ECONOMETRÍA.

TEMA 2. FUNDAMENTOS Y BASES EMPÍRICAS.

TEMA 3. ELECCIÓN DEL TEMA, OBJETIVOS E HIPÓTESIS.

TEMA 4. MUESTREOS, TIPOS, DATOS Y CONTROLES.

Módulo 2. Empleados, ventas y carteras de inversión


TEMA 1. R SOFTWARE.
1.1.- Descripción.
1.2.- Historia.
1.3.- Características
1.4.- Instalación
1.5.- Formatos.
1.6.- Transponer datos de hoja de cálculo.
1.7.- Cargado de archivos.
1.8.- Trabajo de bases de datos.

TEMA 2. ESTADÍSTICA DESCRIPTIVA I.
2.1.- Gráficos de barras.
2.2.- Gráficos de sectores.
2.3.- Histograma.
2.4.- Nubes de puntos.
2.5.- Gráficos de cajas.
2.6.- Gráficos para tablas de doble entrada.
2.7.- Conclusión.

TEMA 3. ESTADÍSTICA DESCRIPTIVA II.
3.1.- Medidas de posición y dispersión.
3.1.1.- Media.
3.1.2.- Mediana.
3.1.3.- Cuasivarianza.
3.1.4.- Cuasidesviación típica.
3.1.5.- Cuantiles.
3.1.6.- Resumen.
3.2.- La distribución normal.
3.3.- Medidas para investigación.
3.4.- Conclusión.

TEMA 4. PRUEBAS NO PARAMÉTRICAS.
4.1.- Test de Wilcoxon.
4.2.- Test de Wilcoxon – Mann-Whitney.
4.3.- Test de Kolmogorov – Smirnov.
4.4.- Test de Kruskal – Wallis.
4.5.- Conclusión.

TEMA 5. CHI-CUADRADO Y T DE STUDENT.
5.1.- Chi- cuadrado de Pearson.
5.1.1.- Introducción.
5.1.2.- Formulación.
5.1.3.- Resolución con R.
5.1.4.- Conclusión.
5.2.- T-Student.
5.2.1.- Distribución t-Student.
5.2.3.- conclusión.

TEMA 6. ANÁLISIS DE VARIANZA. DISEÑO COMPLETAMENTE ALEATORIZADO.
6.1.- Un factor clásico. HSD Tukey.
6.2.- Un factor robusto. HSD Tukey.
6.3.- Dos factores clásico.
6.4.- Dos factores robusto.

TEMA 7. ANÁLISIS DE VARIANZA. MEDIDAS REPETIDAS.
7.1.- Introducción.
7.2.- Formulación.
7.3.- Análisis de Varianza. Medidas Repetidas con R.
7.4.- Conclusión.

TEMA 8. REGRESIÓN Y CORRELACIÓN LINEAL SIMPLES.
8.1.- Regresión lineal simple.
8.1.1.- Introducción.
8.1.2.- Modelo.
8.1.3.- Contraste.
8.1.4.- Tabla de análisis de varianza.
8.1.5.- Regresión con R.
8.1.6.- Conclusión.
8.2.- Correlación simple.
8.2.1.- Introducción.
8.2.2.- Coeficiente de correlación de Pearson.
8.2.3.- Correlación lineal con R.
8.2.4.- Conclusión.

TEMA 9. REGRESIÓN MÚLTIPLE.
9.1.- Modelo.
9.2.- Contraste de la regresión lineal múltiple.
9.3.- Tabla de análisis de la varianza para la regresión lineal múltiple.
9.4.- Estimación de la varianza común.
9.5.- Contraste de hipótesis sobre los coeficientes de regresión.
9.6.- Regresión múltiple con R.
9.7.- Selección secuencial de variables por pasos.

TEMA 10. CORRELACIÓN MÚLTIPLE.
10.1.- Introducción.
10.2.- Cálculo con R.
10.3.- Representaciones gráficas.
10.4.- Conclusión.

Módulo 3. Ganancias y gastos, previsión de ventas y activos bursátiles

TEMA 1. TÉCNICAS ACTUALES EN REGRESIÓN. TRATAMIENTO DE DATOS ANÓMALOS.
1.1.- Introducción.
1.2.- Bibliotecas.
1.3.- Formulación.
1.4.- Ejemplo completo:
1.4.1.- Regresión lineal por mínimos cuadrados.
1.4.2.- Técnicas actuales en Regresión (tratamiento de datos anómalos).
1.4.2.1.- Recta de Huber.
1.4.2.2.- LTS-Least Trimmed Squares.
1.4.2.3.- LMS-Least Median of Squares.
1.4.2.4.- Recta MM.
1.5.- Conclusión.

TEMA 2. REGRESIÓN POISSON.
2.1.- Introducción.
2.2.- Cálculo con R.
2.3.- Conclusión.

TEMA 3. MODELOS DE REGRESIÓN LOGÍSTICA. LOGIT Y PROBIT.
3.1.- Introducción.
3.2.- Modelos logit y probit.
3.3.- Modelos de regresión logit con R.
3.4.- Modelos de regresión probit con R.
3.5.- Conclusión.

TEMA 4. REGRESIÓN SUAVIZADA.
4.1.- Introducción.
4.2.- Formulación.
4.3.- Regresión suavizada con R.
4.4.- Conclusión.

TEMA 5. REGRESIÓN MÚLTIPLE ROBUSTA.
5.1.- Introducción.
5.2.- Regresión de Huber.
5.3.- Regresión múltiple robusta de Huber.
5.4.- MM-estimadores.
5.5.- Regresión múltiple M-estimadores.
5.6.- Conclusión.

TEMA 6. CORRELACIÓN SIMPLE Y MÚLTIPLE ROBUSTAS.
6.1.- Introducción.
6.2.- Correlación robusta para dos variables.
6.2.1.- Correlación de porcentaje ajustado.
6.2.2.- Correlación winsorizada.
6.2.3.- M-estimadores de Goldberg e Iglewicz.
6.3.- Correlación robusta para p variables.
6.3.1.- Correlación de porcentaje ajustado entre p variables.
6.3.2.- Correlación winsorizada entre p variables.
6.4.- Conclusión.

TEMA 7. MODELOS LINEALES GENERALIZADOS UNIVARIANTES.
7.1.- Desarrollo.
7.2.- Conclusión.

TEMA 8. MODELOS LINEALES MIXTOS GENERALIZADOS. DISEÑO POR BLOQUES ALEATORIOS.
8.1.- Introducción.
8.2.- Formulación.
8.3.- Modelos lineales generalizados y mixtos generalizados con R. Diseño por bloques aleatorios.
8.4.- Conclusión.

TEMA 9. ÁRBOLES DE REGRESIÓN Y CLASIFICACIÓN (CARTS).
9.1.- Introducción.
9.2.- Árboles de regresión con R.
9.3.- Prunned o podado del Árbol.
9.4.- Árboles de clasificación con R.
9.5.- Conclusión.

TEMA 10. MODELOS ADITIVOS GENERALIZADOS GAM.
10.1.- Introducción.
10.2.- Formulación.
10.3.- Modelos GAM con R.
10.4.- Conclusión.

TEMA 11. ANÁLISIS DE SUPERVIVENCIA.
11.1.- Introducción.
11.2.- Cálculo completo en R. Uno y dos grupos.

TEMA 12. MODELOS SARIMA DE SERIES TEMPORALES.
12.1.- Introducción.
12.2.- Objetivos y usos en las diferentes ciencias.
12.3.- Paquetes a instalar en R.
12.4.- Bibliotecas a abrir en R.
12.5.- Cómo introducir los datos en R.
12.6.- Ejemplo completo:
12.6.1.- Cálculo con R.
12.6.2.- Filtrado lineal.
12.6.3.- Modelos SARIMA:
12.6.3.1.- Identificación del modelo.
12.6.3.2.- Estimación de los parámetros.
12.6.3.3.- Diagnosis.
12.6.3.4.- Predicción.
12.6.3.5.- Test de serie estacionaria.
12.6.4.- Cointegración de Series.
12.7.- Conclusión.

TEMA 13. PARÁMETROS GRÁFICOS.
13.1.- Gráfico plot. Función legend.
13.2.- Recta de regresión.
13.3.- Histograma.
13.4.- Gráfico de cajas.
13.5.- Gráficos de barras con barras de error.

Módulo 4. Calidad al cliente y marketing

TEMA 1. ANÁLISIS DE CORRESPONDENCIAS.
1.1.- Introducción.
1.2.- Análisis de correspondencias bidimensional con R.
1.3.- Análisis de correspondencias múltiple con R.
1.4.- Conclusión.

TEMA 2. ANÁLISIS FACTORIAL.
2.1.- Introducción.
2.2.- Formulación.
2.3.- Análisis factorial con R.
2.4.- Conclusión.

TEMA 3. ANÁLISIS DE COMPONENTES PRINCIPALES.
3.1.- Introducción.
3.2.- Formulación.
3.3.- Análisis de componentes principales con R.
3.4.- Representaciones gráficas
3.5.- Conclusión.

TEMA 4. ANÁLISIS DISCRIMINANTE.
4.1.- Introducción.
4.2.- Formulación.
4.3.- Análisis discriminante con R.
4.4.- Validación cruzada.
4.5.- Método de los k vecinos más próximos.
4.6.- Método de los k vecinos más próximos. Validación cruzada.
4.7.- Análisis discriminante. K grupos y clasificación desconocida.
4.8.- Conclusión.

TEMA 5. ESCALADO MULTIDIMENSIONAL.
5.1.- Introducción.
5.2.- Formulación.
5.3.- Escalado multidimensional con R. Métrico y no métrico.
5.4.- Cálculo de matrices.
5.5.- Conclusión.

TEMA 6. ANÁLISIS CLUSTERS.
6.1.- Introducción.
6.2.- Formulación.
6.3.- Análisis clusters con R.
6.4.- Elección del número de clusters.
6.5.- Conclusión.

Módulo 5. Herramientas ETL: Big Data y Cubos OLAP.

Tema 1. TRABAJO DE BIG DATA Y CUBOS OLAP.
1.1.- OLAP (On-Line Analytical Processing – Procesamiento analítico en línea)
1.1.1.- Los Cubos OLAP
1-.1.2.- Gestores de bases de datos con OLAP
1.1.3.- Hechos y dimensiones
1.1.4.- Operaciones OLAP
1.1.4.1.- “Rebanada”
1.1.4.2.- “Dados”
1.1.4.3.- Enrollar
1.1.4.4.- Profundizar
1.1.4.5.- Pivote

Inscripción
formulario de inscripción
Modalidades de pago
  • En una sola exhibición
  • 5 pagos diferidos depósitos y transferencias
  • 6 pagos diferidos a trvés de tarjeta de crédito
  • Pago vía Oxxo
%cocid%

Descuento especiales

Si ya cuenta con su membresía COCID, uno de los beneficios que tendrá, es que toda la formación que se imparte tendrá un 20% de descuento.

Si desea adquirir la membresía o conocer más sobre los beneficios que obtendrá, puede dar click sobre la imagen.

CALENDARIO DE PAGOS
 
Inscripciòn$1,000.00 MXN
 del 1 al 15 de mayo de 2024$2,500 MXN
 del 1 al 5 de junio de 2024$2,500 MXN
 del 1 al 5 de julio de 2024$2,500 MXN
 del 1 al 5 de agosto de 2024$2,500 MXN
 del 1 al 5 de septiembre de 2024$2,500 MXN
Envio de Diploma Nacional$800.00 MXN 
Envio de Diploma Internacional$1000.00 MXN

 

Depósito o transferencia

BBVA
PROMOTORA DE FORMACIÓN ASML, S.C.

Cuenta 0113456544
Clabe interbancaria 012542001134565445

REseña de Docente

Mtro. Tomás Alberto Salmerón Enciso

Maestro en Técnicas Actuales de Estadística Aplicada, con una Especialización en Técnicas Robustas y Avanzadas de Estadística Aplicada y Licenciado en Psicopedagogía por la Universidad Nacional de Educación a Distancia (UNED – Madrid, España –). Trabajó para el Dpto. de Protección de Cultivos del Instituto de Formación Agraria y Pesquera de Andalucía (IFAPA – Gobierno de Andalucía, España) desarrollando la tarea de asesor en estadística e investigación. Realizó estudios en colaboración con el Comisionado de Energía de la Unión Europea y sus políticas Medioambientales en el año 2014. Especialista en software R, ha realizado publicaciones y desarrollado varios libros de estadística avanzada con software R y temarios para universidades como el Máster de Estadística Aplicada con Software R de la Universidad Rey Juan Carlos de Madrid (España). Actualmente, radica en México, donde es Director de Colegio Científico de Datos, imparte formación de posgrado en estadística avanzada con R para universidades, es asistente de investigación y estadística para proyectos CONACYT, consultor externo para lel Fondo de Población de las Naciones Unidas en México y expone en congresos nacionales e internacionales.

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *